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Abstract— Unmanned aerial vehicles (UAVs) often depend
on global navigation satellite systems (GNSS) and magnetic
compasses for navigation, making them exposed to malicious
attacks and sensitive to magnetic anomalies, while restricting
operations to within GNSS coverage. By rather relying on
inertial navigation aided by spherical position measurements
from a phased-array radio system (PARS), these vulnerabilities
are avoided. The navigation system relies on a multiplicative
extended Kalman filter for state corrections, and on outlier
rejection to mitigate effects of radio reflections. Field testing
shows that, despite the higher levels of noise in the PARS
signal, the PARS-based position, velocity and attitude estimates
are satisfactory when compared to the autopilot based attitude
and velocity and the real-time kinematic (RTK) GNSS position
reference solution.

I. INTRODUCTION

Global navigation satellite systems (GNSS) are the pri-
mary positioning solution for unmanned aerial vehicles
(UAVs), due to its attractive features: global coverage,
lightweight receivers, high accuracy and low cost. However,
GNSS are not free of potential issues. Due to the low signal-
to-noise ratio (SNR) of GNSS, such position systems are
prone to both jamming [1] and spoofing [2]. One alternative
to overcome this is to use redundant positioning systems.
This also helps mitigate single point of failure, either hard-
ware or software, in GNSS user equipment, or problems
related to the GNSS signals (signal objection, solar winds,
etc.)[3], preventing the GNSS positioning service to work
as intended. With more frequent use of UAVs, the need for
alternatives to GNSS becomes more pressing, to allow safe,
continuous operation of such systems.

During the past few years, phased-array radio systems
(PARS) have been demonstrated on small UAVs as an
redundant positioning system [4]. PARS’ primary usage is
as a high bandwith radio communication tool. In a UAV
context this can involve providing the user with telemetry
data, including a live video stream[5]. However, since such
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systems utilize electronic beamforming, they also provide
the user with information which can be used to deduce
position of the UAV radio relative the ground station [6].
This system complements the security vulnerability aspect
of GNSS solutions through its high signal-to-noise ratio,
its use of encrypted communication, in addition to the
aforementioned redundancy as it is independent of GNSS.
It does, however, require radio line-of-sight, and ordinarily
has lower accuracy than GNSS solutions. Horizontal PARS-
based position accuracy has typically been reported up to ten
times lower than that obtained with the Global Positioning
System (GPS) standard position service (SPS) [4], [6], [7],
depending on range.

In UAV flight, knowledge of the attitude and velocity of
the aircraft is, in addition to position, necessary for the flight
controller. This, combined with the lower position accuracy
of PARS compared to GNSS, motivates the usage of an
PARS aided inertial navigation system (INS), which is based
on mechanization of inertial sensors such as accelerometers
(ACC) and angular rate sensors (ARS), to filter the PARS
position while obtaining estimates of the velocity and atti-
tude.

In the light of advances in small UAVs, and in the
imminent dangers of cyber-security and GNSS denial of
service, PARS for navigation of small UAVs has been an
ongoing research topic by the authors of this paper. Notable
previous work include a nonlinear observer for aided INS,
using PARS, barometer, compass and and IMU [6], and a
robust UAV navigation system using GNSS in combination
with PARS, for spoofing detection and mitigation[7].

In this work the aiding on the INS is implemented using
an indirect multiplicative extended Kalman filter (MEKF)[8].
This is motivated by the desire to couple estimation error
between the translational and rotational kinematics in a single
state space, such that cross covariance between all states can
be exploited when applying aiding corrections based on the
the PARS measurements. Previous flights [6], [7] included
long passes over water, and contained outliers presumed to
come from radio reflections from the water surface. Moti-
vated by this, the present work investigated if the outliers
persists also when flying over land, while extending the nav-
igation system to also include outlier rejection. Furthermore,
in this work, the compass, which is considered an unreliable



yet common sensor for heading estimation, is not needed
since the heading is observable in the presented error-state
equations, given enough excitation. The results presented in
this paper are based on an online implementation, contrary
to previous work, that have presented proofs-of-concept by
post-processing the data.

The paper starts by presenting some notational and math-
ematical preliminaries in Section II, before explaining the
measurement used in the presented PARS, and their equa-
tions, in Section III. Section IV explains how these mea-
surements are combined, using a Multiplicative Extended
Kalman Filter, to provide estimates of the position, attitude
and velocity of the vehicle. Section V presents the hardware
and software used to implement the INS in a real-time
environment and to obtain the experimental results presented
in Section VI.

II. PRELIMINARIES

Before presenting the PARS-based navigation system we
state some preliminaries on mathematical mathematical no-
tations, attitude representations, used coordinate systems and
the strapdown equations used.

A. Notation

The Euclidean vector norm is denoted ‖ · ‖2, the n × n
identity matrix is denoted In, while the transpose of a vector
or a matrix is denoted (·)ᵀ. Coordinate frames are denoted
with {·}. S(·) ∈ SS(3) represents the skew symmetric matrix
such that S(z1)z2 = z1 × z2 for two vectors z1, z2 ∈ R

3. z =
(z1; z2; . . . ; zn) denotes a vector of stacked column vectors
z1, z2, . . . zn. Furthermore, error variables are represented
with with δ?, where ? is the variable placeholder. Partial
derivatives are denoted with ∂?a /∂?b . In addition, za

bc
∈ R3

denotes a vector z, to frame {c}, relative {b}, decomposed in
{a}. The diag(?1, ...,?n) function places the n arguments on
the diagonal of a square matrix. Furthermore, Ts represent
the sampling time or step length in numerical integration
methods.

B. Attitude representations and relationships

The primary attitude representation in this article is the
unit quaternion, using the Hamiltonian representation. For
rotations from some frame γ to another frame β, the unit
quaternion is given as

q
γ
β =

(
qs
qv

)
=

©«
qs
qx
qy
qz

ª®®®¬ ∈ Q (1)

where the set Q is defined according to [9] as

Q := {qγβ | (q
γ
β)

ᵀq
γ
β = 1, qγβ = (qs; qv), qs ∈ R

1, qv ∈ R
3}

(2)

Using Gade’s notation [10], the quaternion can be used to
calculate rotation matrix, Rγβ ∈ SO(3),

Rγβ(q
γ
β) =

(
qs − qᵀv qv

)
I3 + 2qsS(qv) + 2qvqᵀv , (3)

as in e.g. [8, Eq. (4)] and [11, App. D.2].
The Hamiltonian quaternion product, denoted ⊗, is given

such that

q3 = q1 ⊗ q2 =

(
q1s q2s − qᵀ1v q2v

q1s q2v + q2s q1v + S
(
q1v

)
q2v

)
, (4)

[11, App. D.2]. Moreover, the kinematic equation of a given
unit quaternion q1 is given as

Ûq1 =
1
2
q1 ⊗ ω̄ =

1
2
Ω(ω)q1 (5)

where ω̄ = (0;ω) and

Ω(ω) =

(
0 −ωᵀ

ω −S(ω)

)
, (6)

whereas, the quaternion conjugate is denoted as

q∗ =
(
ps, −qv

)ᵀ
. (7)

In addition, to the unit quaternion, the Euler angles (roll,
pitch and yaw) are given as

Θ =
(
φ, θ, ψ

)ᵀ
. (8)

In this paper the attitude error is denoted δq and relates to
the true attitude q and the INS attitude qins through

q = qins ⊗ δq, (9)

such that

δq = q∗ins ⊗ q. (10)

Finally, the chosen three-dimensional attitude error param-
eterization of δq is four times the Modified Rodrigues
Parameters (MRP)

δa = 4δamrp = 4
δqv

1 + δqs
(11)

as given in [8].

C. Coordinate Frames

This paper considers three coordinate frames. The first is
an Earth-fixed, non-rotating North East Down (NED) frame,
denoted {n}. The second coordinate system is the BODY
reference frame, denoted {b}, respectively. The integrated
INS of this article is using this NED frame as navigation
frame. The simplification is motivated by the accuracy of
the PARS portioning [4] is approximately ten times lower
than that of GNSS SPS. This results in the accuracy of the
positioning system being much more significant than the
assumed simplification of a Earth-fixed, non-rotating NED
frame. In addition, the in-run ARS bias stability of MEMS
IMUs is typically one order of magnitude or higher than
the Earth’s rate of rotation. Moreover, the NED directions
are respectively denoted N, E, D. See Fig. 1 for details. The
third coordinate system is the PARS radio coordinate system,
denoted {r}, which is aligned with the PARS ground station.
This coordinate system is a rotated NED frame as can be seen
in Fig. 2.
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Fig. 1: Definitions of the BODY the NED coordinate frames.

D. Kinematics – Strapdown equations

The position and linear velocity of the BODY frame
relative the NED frame are represented as pn

nb
∈ R3, vn

nb
∈

R3 in the NED frame, as indicated by the superscript n. The
attitude between the BODY and the NED frame is given as
the unit quaternion qn

b
, while the angular velocity of BODY

w.r.t to NED is given as ωb
nb
∈ R3, while the gravity vector

is given as gn
b
= (0; 0; g). With this stated, the resulting

stapdown equations follows

Ûpnnb = vnnb (12)

Ûvnnb = Rnb(q
n
b) f

b
nb + gnb (13)

Ûqnb =
1
2
Ω

(
ωb

nb

)
qnb (14)

based on the underlying assumption above that NED can be
considered inertial. Moreover,

f bnb = Rᵀ
nb
(qnb) Ûv

n
nb − Rᵀ

nb
(qnb)g

n
b (15)

represent the specific force.

III. SENSOR SUITE

The PARS-based navigation system relies on measurement
of a series of physical quantities, whose measurement prin-
ciples and equations are presented in the following section.

A. Phased Array Radio System Positioning

The primary functionality of the PARS is communication,
nevertheless, the system can also be used as a positioning
system. By observing the phase difference of the incoming
signal between the different antenna elements in the radio
array, the azimuth and elevation of the UAV can be observed,
in the ground radio’s frame of reference, {r}. This is known
as the direction-of-arrival (DOA) problem [12], which has
several known solutions [13], [14]. Through timing of the
transmission time and subtraction of the internal processing
time, a measurement of the geometric range between the
PARS ground station to the UAV is found.

After having rotated the PARS range, elevation and bear-
ing measurements from the {r}-frame to the {n}-frame, the
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Fig. 2: Range/bearing/elevation measurements. {r} and {b}
denotes the radio and the BODY frame, respectively.

measurements can be used to calculate the relative position
of the UAV in a local Earth-fixed frame. When using an
Earth-fixed, non-rotating, local NED frame, as in this paper,
the range, azimuth and elevation measurements are related to
the UAV position, through the radio coordinate system {r}
using,

yρ = ρu + ερ, (16)
yΨ = Ψu + εΨ, (17)
yα = αu + εα, (18)

where

ρu = ‖p
r
PARS‖2, (19)

Ψu = arctan

(
pr
rb,y

pr
rb,x

)
, (20)

αu = arctan

(
−pr

rb,z

ρ̄u

)
(21)

with

‖prPARS‖2 =

√(
pr
rb,x

)2
+

(
pr
rb,y

)2
+

(
pr
rb,z

)2
,

while ε? ∼ N(0, σ2
?) represents zero-mean Gaussian noise. A

physical intuition of the geometric range ρu , elevation angle
αu and azimuth angle Ψu , given in the {r}-frame, can be
seen in Fig. 2. Moreover, the relationships of (19)–(21) are
similar to those in [15, Ch. 13.6.2.2], used for radar tracking
of aircraft, and can be derived from

prPARS =
©«
pr
rb,x

pr
rb,y

pr
rb,z

ª®®¬ =
©«
ρu cos(Ψu) cos(αu)
ρu sin(Ψu) cos(αu)
−ρu sin(αu))

ª®¬ , (22)

according to Fig. 2. Following [16, Section 1.7.4], the bias
arising from the nonlinear mapping of the azimuth and



elevation angle measurement noise into Cartesian coordinates
can be corrected for by

p̄rPARS =
©«
b−1
Ψ

b−1
α yρ cos(yΨ) cos(yα)

b−1
Ψ

b−1
α yρ sin(yΨ) cos(yα)
−b−1

α yρ sin(yα)

ª®¬ , (23)

in which bΨ = E[cos(εΨ)] = e−σ
2
Ψ
/2 and bα = E[cos(εα)] =

e−σ
2
α/2. Based on (23), the PARS position is given in the {n}

frame with

pnPARS = Rn
r (ΘPARS) p̄

r
PARS, (24)

where ΘPARS represent rotation angles of {r} about {n},
obtained during calibration of the PARS ground antenna [4].

B. Inertial Measurement Unit

A simplified measurement model of an IMU [3], providing
specific force and angular rate sensor (ARS) measurements,
is given as

f bIMU = f bnb + bbacc + ε
b
acc (25)

ωb
IMU = ω

b
nb + bbars + ε

b
ars (26)

where bb? represent the ACC and the ARS biases. εb?
represent zero-mean noise.

IV. THE NAVIGATION SYSTEM

The PARS-based navigation system itself consists of an
INS, whose purpose is to propagate the system dynamics
given the new IMU measurement, and a multiplicative ex-
tended Kalman filter (MEKF), which is used to correct the
INS’ state, xins, using an indirect feedback filter implemen-
tation [17], [11, Ch. 5.10.5.3]. Using this approach the INS
state is steered towards the true state, x by estimating the
error state δx, using

x = xins ⊕ δx, (27)

where ⊕ represents the + or the ⊗ operator, depending on
the state definition. As a result xins → x when the error state
goes to zero/the identity quaternion. The chosen state vector
of the INS was

xins =
(
pnnb,ins; v

n
nb,ins; q

n
b,ins; b

b
acc,ins; b

b
ars,ins

)
. (28)

By mimicking the kinematics of Section II-D we obtained
the follow kinematic model

Ûpnnb,ins = vnnb,ins (29)

Ûvnnb,ins = Rnb(q
n
b,ins)

(
f bIMU − bbacc,ins

)
+ gnb (30)

Ûqnb,ins =
1
2
Ω

(
ωb

ars − bbars,ins

)
qnb,ins (31)

Ûbbacc,ins = −T
−1
accb

b
acc,ins (32)

Ûbbars,ins = −T
−1
ars b

b
ars,ins (33)

where T? are time constants. These equations can be mech-
anized in discrete time using any integration method of
choice. Exact integration methods concerting the quaternion
integration can be found in [11], [18].

A. Multiplicative extended Kalman filter

The state vector of the MEKF, given as

δx = (δp; δv; δa; δbacc; δbars) , (34)

where δa represents the 3D attitude error, is calculated
for every new aiding measurement using a standard error
state Kalman filter implementation [3], [11]. After every
iteration of the MEKF, the INS states with linear error states
corrections are updated using

ξn
nb̂,ins[k] ← ξn

nb̂,ins[k] + δξ̂[k], (35)

where ξ is a placeholder for the position, velocity and the
biases. Moreover, the attitude is corrected using

δq(δ â[k]) =
1

16 + âᵀ[k]â[k]

(
16 − δ âᵀ[k]δ â[k]

8 · δ â[k]

)
, (36)

qnb,ins[k] ← qn
b̂,ins[k] ⊗ δq(δ â[k]). (37)

similar to [8]. After the INS states have been corrected, the
MEKF state is reset to zero

δ x̂[k] ← 0n×1. (38)

For every new IMU measurement, at time t[k] at time index
k the covariance is propagated forward in time according to

P−[k + 1] ← Ad[k]P+[k]A
ᵀ
d
[k] + Qd[k]. (39)

The Ad[k] and Qd[k] can be calculated based on the
continuous-time model

δ Ûx = A(t)δx + B(t)w (40)

where A(t) and B(t), based on the error state parameteri-
zation presented found in Appendix I. Q = E[wwᵀ] is the
covariance of

w =
(
wb

acc; wb
ars; wb

b,acc; wb
b,ars

)
. (41)

The A(t), B(t) and Q(t) matrices can then be used to
calculate the Ad[k] and Qd[k] matrices using e.g. van Loan’s
algorithm, [19] or using standard discretization techniques
[20, Ch. 4.2.1].

B. PARS measurements equation

The linear position ypars = pnpars measurement is calculated
using (24) such that a linear measurement matrix

C =
(
I3 03×3 03×3 03×3 03×3,

)
(42)

can be applied in the error state Kalman filter. This, however,
requires a mapping of the covariance from spherical coordi-
nates to Cartesian coordinates. This is done by linearizing the
measurement ypars w.r.t. to the measurement noise [16, Ch.
1.7], ε =

(
ερ; εΨ; εα

)
in order to calculate a mapping

Jacobian matrix,

M =
∂ypars

∂ε
=

©«
m11 m12 m13
m21 m22 m23
m31 m32 m33

ª®¬ , (43)



where

m11 =
c(yΨ)c(yα)

bΨbα
m12 =

−yρc(yα)s(yΨ)
bΨbα

m13 =
−yρc(yΨ)s(yα)

bΨbα
m21 =

c(yα)s(yΨ)
bΨbα

m22 =
yρc(yΨ)c(yα)

bΨbα
m23 =

−yρs(yΨ)s(yα)
bΨbα

m31 =
s(yα)

bα
m32 = 0

m33 =
−yρc(yα)

bα
.

and s(?) := sin(?), c(?) := cos(?). The M matrix is then
applied taking

Rpars(t) = Rn
r M(t)Rs(t)Mᵀ(t)Rr

n. (44)

in order to calculate the linearized measurement covariance
matrix Rpars, in the {n} frame, where Rs(t) represents the
covariance of ε given in spherical coordinates.

C. Outlier rejection

As seen in e.g. [7], the PARS is susceptible to noise,
particularly reflections. This comes from the fact that the
PARS currently is optimized for communication, not navi-
gation, which causes the beam to travel in the path that gives
the best communication, not necessarily the best navigation.
To avoid degradation of the PVA estimates from bad PARS
measurements, outlier rejection can be added.

Given the normalized residual [21, Section 7.6.1]

ε = (CP−Cᵀ + R)−
1
2 (y − C), (45)

in which the central limit theorem motivates the Gaussian
approximation, the null hypothesis of the measurement being
an inlier is discarded if the test statistic

T(yrpars) = (y
r
pars − Cx)ᵀ(CP−Cᵀ + R)−1(yrpars − Cx) ∼ χ2

1
(46)

is above some limit χ2
α.

V. PRACTICAL ASPECTS

Realization of a PARS for real-time use also calls for inte-
gration of sensors and implementation of the INS algorthms
in an real-time capable environment, a process whose details
are specified in the following subsections.

A. Hardware

An overview of the hardware used in the experiment, and
its interconnection, is showed in Fig. 6. The IMU used in
the experiments was a Sensonor STIM300, a light-weight,
tactical grade, high-performance MEMS-based sensor, con-
figured to output incremental velocity and incremental angles
at 250 Hz.

To provide a high-accuracy position reference, used as a
basis for evaluating the performance of the PARS-based posi-
tion estimates, the payload was also equipped with a Ublox
Neo-M8T GNSS receiver. The receiver was configured to
output raw GNSS observables, which, in combination with

Fig. 3: Radionor CRE2-189 ground station antenna

correction data from a ground station through RTKLIB, were
used to derive a high accuracy real-time kinematics (RTK)
positioning solution.

Furthermore, a SenTiBoard [22] was used to synchronize
and timestamp the IMU and GNSS measurements for post-
process analysis and to ease the integration of the IMU mea-
surements into one Odroid XU4, used as on-board computer.

The on-board computer was also connected to a Pixhawk
3 Pro autopilot running ArduCopter flight control software.
Internally, the autopilot also has a GNSS, magnetometer,
barometer and a low-quality IMU, used in its internal INS1.
The raw measurements and INS states from the autopilot
are recorded to be used as a reference. Furthermore, the
autopilot’s GPS-aided INS states were used in the closed-
loop feedback, as opposed to the PARS-based estimates, as
a safety precaution.

The on-board computer is connected to the UAV-side
PARS, to send telemetry data to the ground station, and to
receive commands and PARS measurements. The PARS used
in these experiments was the Radionor CRE2-189 and CRE2-
144-M2-SMA, seen in Fig. 3 and Fig. 4 respectively. The
CRE2-189 is a ground radio with 8x8 antenna elements,, and
covering a 90◦ frustum both in elevation and in azimuth with
an root mean square error of 0.1◦ in each axis. The CRE2-
144-M2-SMA is the 146 × 78 × 43mm, 295 g UAV onboard
counterpart, which has four SMA antenna connectors. In
addition to providing the link between the UAV and the
ground station, the UAV PARS also works as a relay for
communication from other nodes in the network that not
necessarily have radio line-of-sight to the ground station.
This combination of ground and UAV radios allow for ranges
of up to 114 km, when transmission rates are limited to
0.5 Mbit/s.

All the equipment was mounted in a Nordic Unmanned

1Among the different INS solutions available in the ArduPlane codebase,
the EKF2 was used, as it currently is the default version.



Fig. 4: Radionor CRE2-144-M2-SMA radio module

Fig. 5: Nordic Unmanned Camflight BG-200 HL UAV

Camflight BG-200 HL UAV, manufactured and operated by
Nordic Unmanned. This is a 140 cm-diameter octocopter
designed for high-precision mapping, seen in Fig. 5.

B. Software

The PARS INS was implemented in DUNE Unified Nav-
igation Environment [23], a robotic middleware written in
C++. DUNE also supports a playback of previously recorded
data, to simplify the tuning process and to allow for testing
of new features without the need for new flight time. This
runs in Ubuntu Mate linux on the onboard computer.

C. Calibration

Since the PARS only provides a position measurement
relative to its ground station ({r}-frame), pre-flight calibra-
tion to obtain the full pose of the ground station antenna
relative to the {n}-frame is crucial to obtain accurate abso-
lute position estimates. While the full pose consists of the
geodetic position and the roll-, pitch- and yaw angles, only
the position and yaw angle was considered in the presented
experiment, since the effects of roll and pitch misalignment
are difficult to separate from PARS measurement noise. The
position of the PARS ground station antenna was surveyed
using a GNSS receiver, while the heading of the antenna was
adjusted so that the PARS-based position estimates and the
GNSS-based position estimates from the autopilot aligned.
In a scenario where the ground station experiences malicious
GNSS attacks, a GNSS antenna with heavy shielding on its
sides could be used, since most GNSS attacks come from
land-based units and since attackers from above are easier
to immobilize. For a completely GNSS-free solution, the
ground station position can be found from a map, e.g. using

Fig. 6: System overview

TABLE I: Attitude Statistics

Roll [◦] Pitch [◦] Yaw [◦] Norm [◦]
ME: 0.45 -1.20 -0.46 1.36
AME: 0.95 1.65 4.18 4.59
STD: 1.42 1.75 7.24 7.58
RMSE: 1.49 2.12 7.25 7.70

a particle filter and terrain information or odometry [24], or
by using feature matching [3, Chapter 11].

For obtaining the heading of the ground station antenna,
there are also a variety of options [25], notably [26] where
attitude is determined from a camera and a digital surface
model with a standard deviation of 0.018◦ in heading.

VI. RESULTS

The experiment presented in this section was a part of a
commercial demonstration by Radionor Communications, in
the northern parts of Norway. The main objectives were to
relay the video and audio feed from two mobile cameras
through the UAV, whose GNSS-free position estimate was
displayed on a map in a command center along with the
video/audio feed. Numerical values for the covariance ma-
tricies Q and R are found in Section I-A, while χ2

α = 7 was
chosen as the outlier rejection threshold.

The results from the experiment are visually presented
in Fig. 7, while mean-error (ME), absolute mean-error
(AME), standard deviation (STD) and root mean square error
(RMSE) statistics are shown in Table I, Table II and Table III,
for attitude, position and velocity, respectively.

In Fig. 7a, the attitude from the PARS-aided INS is com-
pared to the attitude and heading reference (AHRS) of the
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(a) Attitude, compared to autopilot reference
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(d) Raw PARS NED position, compared to RTK GNSS reference

Fig. 7: North-Down plot with attitude

TABLE II: Position Statistics PARS-aided INS

North [m] East [m] Down [m] Norm [m]
ME: -3.43 -0.59 2.56 4.32
AME: 3.64 1.65 4.02 5.67
STD: 2.11 2.56 4.18 5.33
RMSE: 4.03 2.63 4.90 6.86

TABLE III: Velocity Statistics PARS-aided INS

North [m/s] East [m/s] Down [m/s] Norm [m/s]
ME: -0.32 -0.04 0.04 0.32
AME: 0.49 0.38 0.31 0.69
STD: 0.70 0.54 0.40 0.97
RMSE: 0.77 0.55 0.40 1.02

autopilot. Seeing as the autopilot is low-cost, and thus based
on low accuracy components, it should not be considered a
ground truth, especially as it relies on a magnetic compass
which is vulnerable to magnetic disturbances. However, it
is a well established navigation solution for closed-loop

flight, and is therefore considered an appropriate reference.
Table I shows that the AHRS and the PARS-aided INS are
reasonably similar. The majority of the attitude error is the
yaw for the first 50 s. However, yaw is also the axis in which
the AHRS accuracy is believed to be the worst, since the
gravity vector measured by the accelerometer is independent
of the yaw angle. This leaves one less sensor to determine
yaw, compared to roll and pitch. Furthermore, the accuracy
of both the AHRS and the PARS-aided INS estimates are
believed to improve in flights with more agile maneuvers.

Comparing to a standalone RTK GNSS position estimate,
in Table II, the norm of the position RMSE for the PARS-
aided INS is comparable to that of a consumer grade GPS
receiver, when operating at this range from the ground
station. When comparing Fig. 7b to Fig. 7d, which also
includes the position calculated directly from the PARS
measurements, it is apparent that the presented INS is able
to reject most of the outliers, and obtain smoother position
estimates.



Studying Fig. 7c one can see that the PARS-aided INS
tracks the velocity of the autopilot well, except for a short
time window around 450 seconds. This deviation probably
stems from one or more measurements, that should have been
rejected as outliers, were used in correcting the INS. When
the inlier measurement again were used for corrections,
the velocity recovered. Looking Table III one can also see
that the velocity estimates were accurate compared to the
autopilot velocity.

VII. CONCLUSION

Aiding a MEMS-based INS with PARS-based spherical
position measurements in an MEKF, has through field tests
proven to be a reasonable alternative for obtaining position,
velocity and attitude estimates of a small multirotor un-
manned aerial vehicle. When compared to a standalone RTK
GNSS reference, the position norm RMSE of the presented
PARS-aided INS was 6.86 m, which is comparable to the
position estimates from consumer grade GNSS-receivers.
The presented PARS makes the unmanned aerial vehicle
independent of GNSS and compass, but the position and
attitude of the ground station antenna, which is essential for
obtaining absolute position estimates in the {n}-frame, were
found using GNSS. Methods to obtain completely GNSS-
and compass-free estimates have been suggested.

APPENDIX I
MEKF MATRICES

The error-state system matrices, based on the four times
MRP attitude error paramtrization can be given as, based on
qn
b
= qn

b,ins ⊗ δq,

A(t) =

©«
03×3 I3 03×3 03×3 03×3
03×3 03×3 Va Vacc 03×3
03×3 03×3 Aa 03×3 Aars
03×3 03×3 03×3 −T−1

acc 03×3
03×3 03×3 03×3 03×3 −T−1

ars

ª®®®®®¬
∈ R15×15, (47)

B(t) =

©«
03×3 03×3 03×3 03×3

−Rnb̂(q
n

b̂,ins
) 03×3 03×3 03×3

03×3 −I3 03×3 03×3
03×3 03×3 I3 03×3
03×3 03×3 03×3 I3

ª®®®®®¬
∈ R15×12, (48)

where

Va = −Rnb̂(q
n

b̂,ins) S
(
f bimu − bb̂acc,ins

)
,

Vacc = −Rnb̂(q
n

b̂,ins),

Aa = −S
(
ωb

imu − bb̂ars,ins

)
,

Aars = −I3.

A. Tuning

The following numerical values where used for the covari-
ance matrices Q and R in the experiment

Q =
©«
q2

acc 0 0 0
0 q2

ars 0 0
0 0 q2

acc bias 0
0 0 0 q2

ars bias

ª®®®¬ (49)

R =
©«
r2

range 0 0
0 r2

azi 0
0 0 r2

elev

ª®¬ (50)

where the diagonal terms are set to qacc = 47.85 m/s2, qars =

5.35 × 10−7 rad/s, qacc bias = 4.91 × 10−3 m/s2, qars bias =

1.74 × 10−7 rad/s, razi = relev = 3.49 × 10−2 rad and rrange =

15.0 m.

ACKNOWLEDGMENT

The authors thank Jon Are Kolstad, Øystein Pedersen and
Inge Aune Paulsen at Radionor Communications for allowing
us to use the PARS equipment their support with the PARS
positioning system. Furthermore we thank Thomas André
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